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A new type of direct methods (DM) called Patterson-function DM are

presented that directly explore the Patterson instead of the modulus function.

Since they work with the experimental intensities, they are particularly well

suited for handling powder diffraction data. These methods are based on the

maximization of the sum function SP /
P

H(IH � hIi)G–H(�) in terms of the �
phases of the structure factors. The quantity accessible from the experiment is

IH, the equidistributed multiplet intensity of reflection H, and hIi is the average

intensity taken over all non-systematically absent reflections. G–H(�) is the

calculated structure-factor amplitude of the squared structure that includes the

positivity and the atomicity of the density function in its definition. The SP sum

function can be optimized with the Patterson-function tangent formula (TF)

using a variant of the S-FFT algorithm [Rius et al. (2007), Acta Cryst. A63, 131–

134]. It is important that overlapped reflections also participate in the phase

refinement, so that not only the resolved reflections but the whole pattern

contribute decisively to the refinement. The increase in effective data resolution

minimizes Fourier series termination effects and improves the accuracy of G(�).

The Patterson-function TF has been applied to synchrotron powder data of

various organic compounds. In all cases the molecules were easily identified in

the respective Fourier maps. By way of illustration the method is applied to

synchrotron powder data of a dimer formed by 30 symmetry-independent

non-H atoms. Since single-crystal data may be regarded as overlap-free powder

data, it is clear that Patterson-function DM can cope with powder and single-

crystal data.

1. Introduction

While structure refinement from carefully measured powder

diffraction patterns proves to be a rather routine task using

the Rietveld method (Rietveld, 1967), the inherent presence

in the pattern of overlapping reflections often renders difficult

or even prevents the derivation of the starting structural

model. Crystal structure solution from powder data is usually

carried out either by (i) extracting the intensities of the

resolved reflections and processing them by direct methods

(DM), or (ii) minimizing the difference between observed and

calculated pattern profiles as a function of the structural

parameters (direct-space methods). Recently, other methods

based on techniques of density-function modification

combined with additional density-function information such

as, for example, histogram matching (Baerlocher et al., 2007)

have appeared with some success. In the case of DM the

bottleneck is to obtain sufficient accurate individual intensity

data when peak overlap is severe. In contrast, for direct-space

methods, the principal limitation is the introduction of

chemical information in the form of expected building units.

This extra information makes them somewhat more robust

against poor data quality but at the same time makes them less

general than DM. In the application of DM to powder data it

is often observed that the calculated Fourier peaks appear

shifted from their ideal positions, thus complicating map

interpretation. This is principally caused by Fourier series

termination effects owing to limited data resolution. Recently,

Altomare et al. (2008) have developed algorithms attempting

to reduce the resolution bias in electron-density maps. No

doubt that one of the principal causes for inaccurate Fourier

maps when applying DM is the more or less straightforward

adaptation of conventional DM strategies, initially developed

for single-crystal (SC) data, to powder (PD) data. For the

specific case of DM based on the origin-free modulus sum

function (Rius, 1993), the quantity to be maximized in terms of

the collectivity � of phases of the quasi-normalized structure

factors E is (Rius, 2002)



SM ¼ 2
X

H

EH � Eh i

N 1=2
G�H �ð Þ; ð1Þ

where the Patterson-type function being explored, i.e. the

modulus function, is indicated by the M subscript and where

G–H(�) are the calculated amplitudes of the structure factors

of the squared structure. Since peak overlap increases with

Bragg angle, resolved reflections will mostly correspond to

data at low or moderate resolution. It is evident that the

limited number of resolved reflections will negatively affect

phase refinement and, by extension, the corresponding

Fourier maps especially for organic compounds.

Historically, prior to the introduction of the Rietveld

method, the structural parameters, X, were refined by least-

squares methods using as experimental data groups of over-

lapping intensities (Rietveld, 1966; Will, 1979), i.e. by mini-

mizing a residual of the type

R1 ¼
PNm

i¼1

wi

P
kðiÞ

jkEk
2 �

P
kðiÞ

jkEk
2

Xð Þ

" #2

; ð2Þ

in which jk is the multiplicity of reflection k in multiplet i

and Nm is the number of multiplets (clusters of unresolved

reflections) in the pattern. By using the total intensity of each

multiplet as a single data unit, crystal structures were refined

accurately without considering the individual peak profiles

during the refinement. It is clear that this practice is only

useful when Nm is much larger than the number of structural

parameters. In present days, integrated intensities can be

extracted by means of whole-pattern matching methods like

the iterative Le Bail algorithm (Le Bail et al., 1988) which

contributes to reduce the impact of this limitation. Instead of

X, one can select in (2) the collectivity of phases of the

structure factors (�) as variables. In contrast to phase

refinement with SM where only the resolved reflections

participate in the summation, phase refinement with R1

involves as many sum terms as there are multiplets in the

pattern, i.e. the whole pattern takes part. In this way the

effective data resolution is enhanced, which contributes to

minimize Fourier series termination effects. Unfortunately, R1,

when expressed in terms of �, is difficult to manipulate;

however, the closely related Patterson-function sum function

can be used instead. This sum function constitutes the basis of

the Patterson-function DM that are described more exten-

sively in x3.

2. Intensity information from a powder diffraction
pattern

Let the structure factor of an arbitrary H reflection (not

systematically absent by space-group symmetry) be

FH ¼ FH exp i’Hð Þ ¼
PN
j¼1

fj Hð Þ exp i2�Hrj

� �
; ð3Þ

where fj is the form factor of atom j, rj is the position vector of

atom j , and N is the total number of atoms in the unit cell. The

structure factor can be corrected for atom scattering fall-off

through division by

PN
p¼1

f 2
p Hð Þ

" #1=2

ð4Þ

to give the so-called quasi-normalized structure factor

EH ¼ EH exp i’Hð Þ ¼
PN
j¼1

f s
j Hð Þ exp i2�Hrj

� �
: ð5Þ

In view of equations (3), (4) and (5) and for crystal structures

containing equal atoms with the same thermal factors, the

decay correction is exact. For this special case the sharpened

scattering factor simplifies to

f s Hð Þ ¼ N �1=2; ð6Þ

so that EH may be regarded as the structure factor of a

hypothetical crystal structure made up of point-like atoms of

height N�1/2. The structure factor of the squared crystal

structure

GH ¼ GH exp i Hð Þ ð7Þ

is obtained by squaring N�1/2, so that for organic compounds

the very simple relationship between GH and EH follows,

G 2
H ¼ E 2

H=N: ð8Þ

In the present application of Patterson-function DM to

powder data the smallest unit of intensity information is

the total intensity of each group of unresolved reflections

(multiplet). For an arbitrary ith multiplet, the total intensity is

Di ¼
P
kðiÞ

jkE 2
k ; ð9Þ

and the sum of the multiplicities of all symmetry-independent

reflections is given by

ni ¼
P
kðiÞ

jk: ð10Þ

If H is an arbitrary reflection of this multiplet, then, in view of

(9) and (10), the equidistributed intensity for H is

IH ¼ Di=ni; ð11Þ

so that hIi, the average taken over all space-group allowed

reflections, is equal to hE 2
i = 1.

3. Patterson-function direct methods

3.1. Definition of the Patterson-function sum function

Patterson-function DM are based on the maximization, in

terms of �, of the sum function

SP ¼ 2
X

H

IH � Ih i

N
G�Hð�Þ: ð12Þ

In this expression, (IH� hIi)/N is the Fourier coefficient of the

best approximation to the origin-free Patterson function (P 0)

derivable from powder data and G–H(�) is the calculated

structure-factor amplitude of the modulus function (M) of

the squared structure. The G–H(�) structure factor can be
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expressed as a function of � by applying the convolution

theorem to �2 = � � �, i.e.,

G�Hð�Þ exp i �Hð�Þ
� �

¼
1

V

X
h

E�hEh�H exp i ’�h þ ’h�Hð Þ
� �

;

ð13Þ

wherein V is the unit-cell volume. Notice that �2 = � �� can be

used because the true density function is assumed to be

positive and made of equal atoms. In the present approach �
corresponds to the Fourier synthesis

�ðrÞ ¼
1

V

X
H

wHEH exp i’Hð Þ exp �i2�Hrð Þ; ð14Þ

where the weight wH is 1.0 for experimental or extrapolated

EH values greater than Elim (’ 1.10) and 0.0 otherwise. In (13),

 –H(�) is the phase associated with G–H(�) and its value is

derived from the available ’ estimates. By isolating G–H(�) in

(13) and by introducing the resulting expression in (12), it

follows that

SP ¼
2

N

X
H

IH � hIið Þ

�
1

V

X
h

E�hEh�H exp i  Hð�Þ þ ’�h þ ’h�H

� �� � !
; ð15Þ

where the difference IH � hIi can be either positive or nega-

tive.

3.2. The Patterson-function tangent formula

At the maximum, the partial derivatives of SP vanish. By

differentiating (15) and by equating to zero and isolating the

sin’h /cos’h quotient in the resulting expression, the desired

Patterson-function tangent formula (TF) is obtained. It can be

written in compact form as the angular part of QH, the

complex quantity between brackets in (16),

’hðnewÞ ¼ phase of

�
1

V

X
H

IH � hIið ÞEh�H

� exp i  Hð�Þ þ ’h�H

� �� �	
: ð16Þ

The Patterson-function tangent formula (16) can be applied in

parallel mode by means of a slightly modified version of the

full-symmetry S-FFT algorithm (Rius et al., 2007; Rius &

Frontera, 2007). This S-FFT variant is described in Fig. 1. In a

first step, the two Fourier syntheses, � = FT�1½wHEH expði’HÞ�

and � = FT�1½IH � hIi expði HÞ�, are calculated. In a second

step, the � �� product is performed with QH being the corre-

sponding Fourier coefficients (new structure factors). Calcu-

lation of � �� in direct space is very convenient since it allows

information on the unit-cell contents to be introduced by

computing QH with the N largest peaks in � ��. Notice that (16)

requires the EH amplitudes to be known. This forces the

amplitudes of overlapped reflections to be updated from cycle

to cycle (Fig. 1). This is done using the expression

E 2
HðnewÞ ¼

niQ
2
HP

k jkðiÞQ
2
kðiÞ

" #
IH ¼ tHIH ð17Þ

in order to satisfy the total intensity of each multiplet.

4. The Patterson-function TF applied to powder data of
organic compounds

In recent years considerable efforts have been devoted to the

solution of crystal structures of inorganic compounds from

powder diffraction data, so that nowadays many of them can

be determined straightforwardly if they are crystalline enough.

Principal causes for this success compared with organic

compounds are that inorganic ones (i) tend to have smaller

unit cells and/or higher metrics (less accidental peak overlap),

(ii) contain stronger scatterers with higher contrast (smaller

effective number of atoms) and (iii) are more stable (higher

consistency of the measured data set over the whole 2� range).

From the single-crystal experience it is known that direct

methods work well with organic compounds if data sets reach

1.1–1.2 Å resolution. In the case of powder diffraction this

resolution limit corresponds to the high-angle portion of the

pattern, where peak overlap is most severe and intensity

statistics poorer. It is clear that any inconsistency in the data

(e.g. variation of unit-cell dimensions or radiation damage

during data acquisition) and poor intensity statistics will

negatively affect the peak-overlap treatment. To overcome

these experimental limitations the combination of modern

fast-readout solid-state microstrip detectors with synchrotron

radiation is decisive. However, accurate data collection is not

the only difficulty. Phasing algorithms capable of handling the

very severe peak overlap at high-angle regions are also

necessary to cope with data from organic compounds. As

confirmed by some tests performed on synchrotron powder

diffraction data of various organic compounds, the Patterson-
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Figure 1
Iterative S-FFT phase-refinement procedure slightly modified for
Patterson-function TF refinement with powder data. Initial phase values
(upper right corner) are combined with weighted experimental and
extrapolated amplitudes to give the initial � values (upper right corner).
Information on the multiplet intensities is introduced via the (IH � hIi)
coefficients. New structure-factor estimates are alternatively obtained by
Fourier inverting � �� (FT) or directly from the N top-ranked Fourier
peaks (SFC) of � ��. For overlapped reflections, E 2

H values are updated
every cycle [see equation (17) for the meaning of t H] while keeping the
global intensity of each multiplet constant.



function TF constitutes a promising option (Rius, 2010a). To

illustrate its capability to treat peak overlap, the application to

(S)-(+)-ibuprofen has been selected (Freer et al., 1993). The

unit cell is monoclinic [a = 12.4627 (1), b = 8.0251 (1), c =

13.5293 (2) Å, � = 112.9509 (8)�, V = 1246 Å3] and contains

two symmetry-independent molecules giving rise to a cyclic

hydrogen-bonded dimer with formula C26H16O4 (Fig. 2). The

powder data, kindly supplied by F. Gozzo, were collected at

the PD station of the Materials Science beamline of the Swiss

Light Source using the Mythen-II microstrip one-dimensional

detector (Schmitt et al., 2004). The intensities were extracted

by whole-pattern least-squares refinement using the recursive

formula of Rius et al. (1996) as implemented in the DAJUST

program (Rius, 2010b). Relevant parameters are: � =

1.00097 (3) Å; dmin = 1.10 Å; �(2� zero-offset) = 0.0001�;

Lorentzian peak profiles overlap criterion: <0.5 � FWHM

(full width at half-maximum). Peak breadths (FWHM) are

0.014, 0.023, 0.031 and 0.040� for respective d-spacings at >10,

2.5, 1.5 and 1.1 Å (Fig. 3). Extracted multiplet intensities were

processed by a new XLENS version using the Patterson-

function TF (Rius, 2010c). The chemical composition

constraint (number of non-H atoms in the unit cell) was

applied every second refinement cycle. Relevant parameters

for phase refinement are: Boverall = 5.2 Å2; dmin = 1.10 Å2; total

number of reflections, 1009; number of trials, 25; maximum

number of cycles per trial, 50; interval of the correlation

coefficients of the multiplets for true solutions, 0.92–0.89; for

incorrect ones, <0.85; success rate, 7 trials out of 25. All

correct solutions develop the complete structural model.

Details of the model extracted from the Fourier map (Fig. 2)

are listed in Table 1.

In conclusion, Patterson-function DM can be successfully

applied to multiplet intensities extracted from good quality

powder patterns yielding atomic distances that are accurate

enough to allow molecular identification in Fourier maps. For

organic compounds the restrictiveness of the squaring method

(all atoms must be approximately equal) is not a problem; on

the contrary, it helps to overcome the information loss owing

to peak overlap.
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Figure 2
Perspective view along b of the monoclinic unit cell of ibuprofen (Freer et
al., 1993) with atomic positions taken directly from the direct-methods
Fourier map. There are two symmetry-independent molecules forming
carboxylic acid dimers. Image created using Mercury2.2 (Cambridge
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Figure 3
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tion. The portion of the ibuprofen powder pattern centred at d ’ 1.10 Å
shows peak overlap and intensity statistics. Only the pattern information
above dmin = 1.10 Å (< 2� ’ 54�) was processed by XLENS (Rius, 2010c).
Plot created with WinPLOTR (Roisnel & Rodriguez-Carvajal, 2001).

Table 1
Bond lengths (Å) obtained by application of the Patterson-function TF to
powder (PD) data (second column) and from least-squares refinement
with single-crystal (SC) data (third column).

To simplify the comparison, bonds have been grouped into types. It can be
seen that (i) the average C—C bond lengths derived from PD are longer by a
factor of approximately 1.035 (this result may be attributed to the non-
inclusion of H atoms in DM); (ii) single and double C—O bonds of the
carboxyl groups are correctly assigned with similar average lengths, (1.50 +
1.09)/2 = 1.30 Å for PD and (1.32 + 1.21)/2 = 1.27 Å for SC; (iii) distances
between hydrogen-bonded O atoms are practically coincident.

Bond type PD SC

C—C (single bond) (14�) 1.56 (9) 1.51 (3)
C—C (phenyl ring) (12�) 1.43 (8) 1.38 (2)
C—O (� single bond) (2�) 1.50 (3) 1.32 (1)
C—O (�double bond) (2�) 1.09 (6) 1.21 (1)
O� � �O (hydrogen bonds) (2�) 2.66 (1) 2.65 (1)
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